@ReasoningParserManager.register_module("ernie45")
class Ernie45ReasoningParser(BaseThinkingReasoningParser):
"""
Reasoning parser for Ernie45 thinking model.
The Ernie45 thinking model ouput format is
abc\n</think>\n\n<response>\ndef\n</response>\n
or abc\n</think>\ndef
"""
response_start_token: str = "<response>"
response_end_token: str = "</response>"
newline_token: str = "<0x0A>"
@property
def start_token(self) -> str:
"""The token that starts reasoning content."""
return "<think>"
@property
def end_token(self) -> str:
"""The token that ends reasoning content."""
return "</think>"
def __init__(self, tokenizer: PreTrainedTokenizerBase):
super().__init__(tokenizer)
if not self.model_tokenizer:
raise ValueError(
"The model tokenizer must be passed to the ReasoningParser "
"constructor during construction."
)
self.start_token_id = self.vocab.get(self.start_token)
self.end_token_id = self.vocab.get(self.end_token)
self.response_start_token_id = self.vocab.get(self.response_start_token)
self.response_end_token_id = self.vocab.get(self.response_end_token)
self.newline_token_id = self.vocab.get(self.newline_token)
self.parser_token_ids = [self.end_token_id, self.response_end_token_id]
if self.start_token_id is None or self.end_token_id is None:
raise RuntimeError(
"Ernie45 reasoning parser could not locate think start/end "
"tokens in the tokenizer!"
)
def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> DeltaMessage | None:
"""
Extract reasoning content from a delta message.
Handles streaming output where previous + delta = current.
Uses token IDs for faster processing.
The Ernie45 thinking model ouput format is
abc\n</think>\n\n<response>\ndef\n</response>\n
or abc\n</think>\ndef
- 'abc' goes to reasoning_content
- 'def' goes to content
"""
# Skip single special tokens
if len(delta_token_ids) == 1 and (
delta_token_ids[0]
in [
self.start_token_id,
self.end_token_id,
self.response_start_token_id,
self.response_end_token_id,
]
):
return None
# No <think> in previous or delta, also need to check for </think>.
# Because the model may have generated </think> without <think>
if self.end_token_id in delta_token_ids:
# </think> in delta with more tokens,
# extract reasoning content and content
think_end_index = delta_text.find(self.end_token)
reasoning_content = delta_text[:think_end_index]
content = delta_text[think_end_index + len(self.end_token) :]
content = content.lstrip("\n")
response_start_idx = content.find(self.response_start_token)
response_end_idx = content.rfind(self.response_end_token)
if response_start_idx != -1:
content = content[response_start_idx + len(self.response_start_token) :]
if response_end_idx != -1:
content = content[:response_end_idx]
return DeltaMessage(
reasoning_content=reasoning_content,
content=content if content else None,
)
elif self.end_token_id in previous_token_ids:
# </think> in previous, thinking content ends
content = delta_text
if self.response_start_token_id in delta_token_ids:
content = content.lstrip("\n")
response_start_idx = content.find(self.response_start_token)
content = content[response_start_idx + len(self.response_start_token) :]
# if have </response>, remove it
response_end_idx = content.rfind(self.response_end_token)
if response_end_idx != -1:
content = content[:response_end_idx]
elif self.response_end_token_id in delta_token_ids:
response_end_idx = content.rfind(self.response_end_token)
content = content[:response_end_idx]
# remove \n after </think> or </response>
if previous_token_ids[-1] in self.parser_token_ids and (
len(delta_token_ids) > 0 and delta_token_ids[0] == self.newline_token_id
):
content = content.lstrip("\n")
# remove \n after </think>\n
if (
len(previous_token_ids) > 1
and previous_token_ids[-2] == self.end_token_id
) and (
len(delta_token_ids) > 0 and delta_token_ids[0] == self.newline_token_id
):
content = content.lstrip("\n")
return DeltaMessage(content=content if content else None)
else:
# no </think> in previous or delta, reasoning content continues
return DeltaMessage(reasoning_content=delta_text)
def extract_reasoning_content(
self, model_output: str, request: ChatCompletionRequest
) -> tuple[str | None, str | None]:
"""
Extract reasoning content from the model output.
The Ernie45 thinking model ouput format is
abc\n</think>\n\n\n<response>\ndef\n</response>\n
or abc\n</think>\ndef
- 'abc' goes to reasoning_content
- 'def' goes to content
Returns:
tuple[Optional[str], Optional[str]]: reasoning content and content
"""
reasoning_content, content = super().extract_reasoning_content(
model_output, request
)
if content:
start_idx = content.find(self.response_start_token)
end_idx = content.rfind(self.response_end_token)
# Simultaneously existing and in the correct order
if start_idx != -1 and end_idx != -1 and start_idx < end_idx:
content = content[start_idx + len(self.response_start_token) : end_idx]
final_content = content or None
return reasoning_content, final_content