vllm.model_executor.models.modernbert ¶
ModernBertAttention ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
Wqkv instance-attribute
¶
Wqkv = QKVParallelLinear(
hidden_size, head_dim, num_heads, bias=attention_bias
)
attn instance-attribute
¶
attn = EncoderOnlyAttention(
num_heads,
head_dim,
scaling,
prefix=f"{layer_id}.attn",
per_layer_sliding_window=sliding_window,
)
rotary_emb instance-attribute
¶
rotary_emb = ModernBertRotaryEmbedding(
config=config,
head_size=head_dim,
dim=head_dim,
base=rope_theta,
)
__init__ ¶
__init__(
config: ModernBertConfig, layer_id: int | None = None
)
Source code in vllm/model_executor/models/modernbert.py
forward ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertEmbeddings ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
tok_embeddings instance-attribute
¶
tok_embeddings = VocabParallelEmbedding(
vocab_size, hidden_size
)
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
forward ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertEncoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
layers instance-attribute
¶
layers = ModuleList(
[
(ModernBertLayer(config=config, layer_id=layer_id))
for layer_id in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward ¶
ModernBertForSequenceClassification ¶
Bases: Module
, SupportsCrossEncoding
Source code in vllm/model_executor/models/modernbert.py
model instance-attribute
¶
model = ModernBertModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "modernbert"),
)
pooler instance-attribute
¶
pooler = DispatchPooler(
{
"token_classify": for_token_classify(
pooler_config, classifier=classifier
),
"classify": ClassifierPooler(
pooling=pooling,
classifier=classifier,
act_fn="classify",
),
"score": ClassifierPooler(
pooling=pooling,
classifier=classifier,
act_fn="score",
),
}
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward ¶
forward(
input_ids: LongTensor | None,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertForTokenClassification ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
model instance-attribute
¶
model = ModernBertModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "modernbert"),
)
pooler instance-attribute
¶
pooler = DispatchPooler(
{
"token_classify": for_token_classify(
pooler_config=pooler_config
)
}
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward ¶
forward(
input_ids: Tensor | None,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
get_input_embeddings ¶
load_weights ¶
ModernBertLayer ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
forward ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertMLP ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertModel ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
hf_to_vllm_mapper class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={"layers.": "encoder_layer.layers."}
)
__init__ ¶
__init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertPooler ¶
Bases: Pooler
Source code in vllm/model_executor/models/modernbert.py
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
forward ¶
forward(
hidden_states: Tensor | list[Tensor],
pooling_metadata: PoolingMetadata,
) -> Tensor | list[Tensor]
Source code in vllm/model_executor/models/modernbert.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
ModernBertPredictionHead ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
norm instance-attribute
¶
norm = LayerNorm(
hidden_size,
eps=getattr(config, "norm_eps", 1e-05),
bias=getattr(config, "norm_bias", True),
)
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertRotaryEmbedding ¶
Bases: RotaryEmbedding